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Abstract We introduce an iterative procedure for finding a point in the zero set (a solution
to 0 ∈ A(v) and v ∈ C) of an inverse-monotone or inverse strongly-monotone operator A
on a nonempty closed convex subset C in a uniformly smooth and uniformly convex Banach
space. We establish weak convergence results under suitable assumptions.
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1 Introduction

Let X be a Banach space with dual space X∗ and let A : X → X∗ be a point-to-point operator
and C be a nonempty closed convex subset of X. The problem of finding v ∈ X such that

Av = 0 and v ∈ C (1.1)

is connected with convex minimization problems and variational inequalities (see Lemma
2.2). Iterative methods for finding a point verifying Eq. 1.1 have been extensively studied in
[5,7,12,13] and references therein, where the operator A is single-valued or set-valued. The
inverse-monotonicity of the nonlinear operators A and strong-nonexpansion of the resolvents
Ag

α of A, etc., discussed in this paper are generalizations of inverse-strong monotonicity and
nonexpansion of operators in Hilbert spaces (see [5,8,11] for details).

For each α ∈ (0,∞) we consider the operator Ag
α : X → X defined by

Ag
αx = g∗′(g′(x)− αAx) (1.2)
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(see [5]), where g is a lower semicontinuous and proper convex function, g∗′ is the derivative
of Fenchel conjugate of g, and g and g∗ are Gâteaux differentiable on X and X∗, respectively.
Butnariu and Resmerita [5] considered the following iterative process :

Choose x0 ∈ C and define xn+1 = �
g
C ◦ Ag

αxn, ∀n ∈ N, (1.3)

where �
g
C denotes the Bregman projection of x on C with respect to g, and “◦” means the

composition operation of the operators �
g
C and Ag

α . When A is inverse-monotone and weakly
sequentially continuous, or it is inverse strongly-monotone, it is shown in [5] that the weak
accumulation points of the sequence generated by (1.3) are solutions of Eq. 1.1.

On the other hand, Kamimura, Kohsaka and Takahashi [9] studied the following algorithm
in a smooth and uniformly convex Banach space for finding a point in the zero set of a maximal
monotone operator T ; namely,

xn+1 = J−1(αn J (xn)+ (1− αn)J (Jrn xn)), n = 1, 2, . . . , (1.4)

where Jr = (J + rT )−1 J , J is the duality mapping of X and the sequences {αn}, {rn} of real
numbers are chosen appropriately.

In [11], when X is a uniformly smooth and uniformly convex Banach space, the authors
studied the problem finding v ∈ X satisfying v ∈ T−10∩ A−10∩C , where A is an inverse-
monotone operator and T is a maximal monotone operator. To this end, they proposed a
hybrid method of extragradient method and proximal point algorithm as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0 = x ∈ C,

yn = �C J−1(J (xn)− αAxn),

zn = J−1(βn J (xn)+ (1− βn)J (Jrn yn)),

xn+1 = �C zn, n = 1, 2, . . . ,

(1.5)

where �C is shortening of �
g
C in the case g= 1

2‖ · ‖2. When βn = rn ≡ 0, the iterative (1.5)
reduces to (1.3) with g= 1

2‖ · ‖2. In this paper, we consider only the generalization of the
iterative process (1.2) for solving the equation v ∈ A−10 ∩ C .

Motivated by (1.3) and (1.4), we propose an iterative scheme for finding a zero of an
inverse-monotone operator A : X → X∗ relative to g = 1

2‖ · ‖2 on a closed convex subset C
of X in the case when X is a uniformly smooth and uniformly convex Banach space:

⎧
⎪⎨

⎪⎩

x0, x1 ∈ C,

zn = J−1((1− βn)J (Aαxn)+ βn J (Aαxn−1)),

xn+1 = �C zn, n = 1, 2, . . . ,

(1.6)

where x0, x1 ∈ C, βn ∈ [0, 1), and �C and Aα are shortening of �
g
C and Ag

α whenever
g = 1

2‖ · ‖2. We prove that the sequence generated by (1.6) converges weakly to a solution
of Eq. 1.1 under suitable assumptions.

When βn ≡ 0, the algorithm (1.6) reduces to (1.3).

2 Preliminaries

Suppose that X is a reflexive Banach space with dual space X∗, and the norms on X and
X∗ are denoted by ‖ · ‖ and ‖ · ‖∗, respectively. As usual, we denote the duality pairing
of X∗ and X by 〈x∗, x〉 or 〈x, x∗〉, where x∗ ∈ X∗ and x ∈ X, and→ and ⇀ denote the
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strong convergence and the weak convergence of a sequence in X, respectively. Also, we use
w− lim

n→∞ xn to denote the weak-limit of a sequence {xn} of X. Denote by R and N the set of

all real numbers and the set of all nonnegative integers, respectively.
Let S = {x ∈ X | ‖x‖ = 1} denote the unit sphere of a Banach space X. A Banach space

X is said to be uniformly convex if, for any ε ∈ (0, 2] there exists δ > 0 such that, for any
x, y ∈ S,

|x − y‖ ≥ ε implies ‖ x + y

2
‖ ≤ 1− δ.

A Banach space X is said to be strictly convex if, for any x, y ∈ S and x �= y, ‖ x+y
2 ‖ < 1.

The norm on X is said to be Gâteaux differentiable if the limit

lim
t→0

‖x + t y‖ − ‖x‖
t

(2.1)

exists for each x, y ∈ S and in this case X is said to be smooth. X is said to have a uniformly
Fréchet differentiable norm if the limit (2.1) is attained uniformly for x, y ∈ S and in this
case X is said to be uniformly smooth.

The related properties of the strict (uniform) convexity, (uniform) smoothness of Banach
spaces can be found in [2]. For instance, X is uniformly convex if and only if X∗ is uniformly
smooth, which implies that X is reflexive; if X is a reflexive Banach space, then X is strictly
convex if and only if X∗ is smooth and X is smooth if and only if X∗ is strictly convex.

The duality mapping J : X ⇒ X∗ is defined by

J (x) = {x∗ ∈ X∗ | 〈x∗, x〉 = ‖x∗‖2∗ = ‖x‖2}, ∀ x ∈ X;
the duality mapping J ∗ : X∗ ⇒ X is defined by

J ∗(x∗) = {x ∈ X | 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2∗}, ∀ x∗ ∈ X∗.

The following results concerning the duality mapping are well known (see [2,15]): X is
reflexive, strictly convex and smooth if and only if J is single-valued and bijective. In this
case J−1 = J ∗. If X is uniformly convex, then J ∗ is uniformly norm to norm continuous on
each bounded subset of X∗ and X is strictly convex.

A duality mapping J of a smooth Banach space is said to be weakly sequentially continuous
if xn ⇀ x implies that {J xn} converges weakly∗ to J x .

Lemma 2.1 ([16]) Let X be a uniformly convex Banach space. Then for each r > 0, there
exists a strictly increasing, continuous and convex function k : [0,∞) → [0,∞) such that
k(0) = 0 and

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)k(‖x − y‖)
for all x, y ∈ {z ∈ X | ‖z‖ ≤ r} and λ ∈ [0, 1].

A function g : X → (−∞,+∞] is said to be proper if the set {x ∈ X | g(x) ∈ R} is
nonempty. A proper function g is said to be convex if

g(λx + (1− λ)y) ≤ λg(x)+ (1− λ)g(y) (2.2)

for all x, y ∈ X and λ ∈ (0, 1). g is strictly convex, if the inequality (2.2) is strict. Additionally
g is said to be lower semicontinuous if the set {x ∈ X | g(x) ≤ λ} is closed in X for all
λ ∈ R.
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Let g be a lower semicontinuous, proper and strictly convex function. Assume that g is
Gâteaux differentiable on X , and so its Fenchel conjugate g∗ is also Gâteaux differentiable
on X∗. The Bregman distance with respect to g is defined as Dg : X × X → R,

Dg(x, y) = g(x)− g(y)− 〈g′(y), x − y〉. (2.3)

As g is strictly convex and Gâteaux differentiable, the function Dg(·, y) for any y ∈ X is
nonnegative, strictly convex and Dg(x, y) = 0 if and only if x = y.

Given a nonempty closed convex subset C ⊂ X and any x ∈ X, the Bregman projection
of x on C with respect to g, which is denoted by �

g
C x, is defined as the solution of the convex

optimization problem min
y∈C

Dg(y, x), i.e.,

�
g
C x : = arg min

y∈C
Dg(y, x). (2.4)

The modulus of total convexity of g is the function νg : X × R+ → R, defined as

νg(x, t) = inf{Dg(y, x) : y ∈ X, ‖y − x‖ = t}. (2.5)

A function g is called totally convex at x if νg(x, t) > 0 whenever t > 0. A function g is
called totally convex if νg(x, t) > 0 whenever x ∈ X and t > 0. A function g is called
totally convex on bounded sets if inf

x∈B
νg(x, t) > 0 for each bounded nonempty subset B of

X. The total convexity on bounded sets of g is also termed the uniform total convexity of g
(see [6]). If g is totally convex, then νg(x, st) ≥ sνg(x, t) for all s ≥ 1, t ≥ 0 and x ∈ X.

The function g is called sequentially consistent [3] if for any two sequences {xn} and {yn}
such that {xn} is bounded and lim

n→∞ Dg(yn, xn) = 0 we have lim
n→∞‖xn − yn‖ = 0. Also, g

is sequentially consistent if and only if it is totally convex on bounded sets (see Proposition
4.2 in [4]).

Applying the Bregman projection with respect to g, where, except the above assumptions,
g is also totally convex or coercive in the sense that lim‖y‖→∞

g(y)
‖y‖ = ∞, we know that the

operator �
g
C : X→C ⊂ X is well defined and it holds (see Corollary 4.5 in [5]) that

Dg(y,�
g
C x)+ Dg(�

g
C x, x) ≤ Dg(y, x), ∀ y ∈ C. (2.6)

Let A : X→ X∗ be an operator and Ag
α be defined as above. When g = 1

2‖ ·‖2, we denote
Ag

αx = Aαx . Due to g∗′ = (g′)−1, we know that Ax = 0 if and only if x is a fixed point of
Ag

α .
We say that the operator A is inverse-monotone (see [5]) on C relative to g if there exists

a real number α > 0 and a vector z ∈ C such that

〈Ay, Ag
α y − z〉 ≥ 0, ∀y ∈ C. (2.7)

In this case, the vector z involved in (2.7) is called monotonicity pole of A. Denote by A0

the set of all such vectors. Clearly, A0 is a closed convex subset of C.

If A is inverse-monotone on C relative to g, by Theorem 5.5 in [5], it holds true that
A−10 ∩ C �= ∅. That is the set of solutions of Eq. 1.1 is nonempty.

Let T : X ⇒ X∗ be a set-valued maximal monotone operator and C be a nonempty closed
convex subset of X. Usually, We view NC x as the normal cone for C at a point x ∈ C, i.e.,

NC x = {x∗ ∈ X∗ | 〈y − x, x∗〉 ≤ 0 for all y ∈ C}.
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Let

Sv =
{

T v + NCv, if v ∈ C,

∅, if v /∈ C.
(2.8)

When X is a reflexive Banach space and int (Dom(T ))∩C �= ∅, it is known that S is maximal
monotone. Additionally, if X is strictly convex and smooth as well, we denote the resolvent
of S by Jr = (J + r S)−1 J for all r > 0 and the Yosida approximation of S by Br = J−J Jr

r .

Lemma 2.2 Suppose X is a reflexive, strictly convex and smooth Banach space. Let T : X ⇒
X∗ be a maximal monotone operator and C be a nonempty closed convex subset of X. If S
defined as (2.8) is maximal monotone and S−10 �= ∅, then S−10 = B−1

r 0 ∩ C for all r > 0,

and Br is inverse-monotone on C relative to 1
2‖ · ‖2 with constant r and S−10 = Br 0.

Proof Since v ∈ S−10 if and only if v = Jrv for any r > 0, which is equivalent to
Brv = Jv−J Jr v

r = 0 for any r > 0, i.e., v ∈ B−1
r 0 for r > 0. Also, v ∈ S−10 means v ∈ C.

Consequently, v ∈ S−10 if and only if v ∈ B−1
r 0 ∩ C for all r > 0.

Let Br r x = J−1(J x − rBr x). While g = 1
2‖ · ‖2, g′ = J. By (1.2), this is the case that

Br r x = Br
g
r x . Since S is maximal monotone and Br x ∈ S(Jr x) for all x ∈ X and r > 0, we

have that

〈v − Br r x, Br x〉 = 〈v − J−1(J x − rBr x), Br x〉
= 〈v − Jr x, Br x〉 ≤ 0 (2.9)

for all v ∈ S−10, x ∈ X and r > 0, which implies by (2.7) that, for all r > 0, Br is inverse-
monotone on C relative to 1

2‖·‖2 with constant r and S−10 ⊆ Br 0. Since Br 0 ⊆ B−1
r 0∩C =

S−10, we get Br 0 = S−10. ��
Note that in this case we also have S−10 = B−1

r 0 for all r > 0. Consequently, the Yosida
approximation Br of the maximal monotone operator S is inverse-monotone, moreover, the
monotonicity pole Br 0 relative to constant r of Br is just S−10.

Recall [3] that an operator B : X → X is called totally nonexpansive with respect to the
function g on the set C if there exists a vector z ∈ C such that

Dg(z, Bx)+ Dg(Bx, x) ≤ Dg(z, x),∀ x ∈ C. (2.10)

A vector z for which the condition (2.10) is satisfied is called nonexpansivity pole of B with
respect to g.

Lemma 2.3 ([5]) The operator A is inverse-monotone relative to g with constant α if and
only if the operator Ag

α is totally nonexpansive with respect to g, that is, for some z ∈ C the
following inequality holds:

Dg(z, Ag
αx)+ Dg(Ag

αx, x) ≤ Dg(z, x),∀ x ∈ C. (2.11)

In this case, z ∈ C is a monotonicity pole of A if and only if it is a nonexpansivity pole of Ag
α.

Recall that the operator A is nonexpansive on C with respect to g if

Dg(Ax, Ay) ≤ Dg(x, y), ∀x, y ∈ C. (2.12)

We say that the operator A is inverse strongly-monotone (see [5]) on C relative to g if A
is inverse-monotone on C relative to g with constant α > 0 and Ag

α is nonexpansive on C
with respect to g, i.e.,

Dg(Ag
αx, Ag

α y) ≤ Dg(x, y), ∀x, y ∈ C. (2.13)
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Let A : X→ X∗ be an operator and C be a nonempty closed convex subset of X. The
variational inequality problem is to find x ∈ C such that

〈Ax, v − x〉 ≥ 0

for all v ∈C . The set of solutions of the variational inequality problem is denoted by
V I (C, A).

Lemma 2.4 ([11]) Let A : X→ X∗ be an operator and C be a nonempty closed convex subset
of X. If Ag

α is nonexpansive on C with respect to g for some α > 0 and A−10∩C �= ∅, then
x ∈ V I (C, A) if and only if x ∈ A−10 ∩ C.

Lemma 2.5 ([11]) Let A : X→ X∗ be an operator and C be a nonempty closed convex
subset of X. If A is inverse-monotone, then A−10 ∩ C �= ∅ and x ∈ V I (C, A) if and only if
x ∈ A−10 ∩ C.

We say that the operator Ag
α is strongly nonexpansive on C relative to g (where α > 0) if

there exists λ > α such that

Dg(Ag
αx, Ag

α y) ≤ Dg(x, y)+ α(α − λ)Dg(g
∗′(Ax), g∗′(Ay)), ∀x, y ∈ C (2.14)

(see [11]). Clearly, if an operator Ag
α is strongly nonexpansive on C relative to g with constant

λ, then it is nonexpansive on C relative to g with constant α > 0.

Recall that g is quadratically homogeneous on X , if g(αx) = α2g(x) for all x ∈ X and
α ∈ R. It is easy to verify that if A = g′, where g is a quadratically homogeneous, lower
semicontinuous and proper convex function on X , then Ag

α is strongly nonexpansive on X
relative to g (see [11]).

We say that the operator A is strongly inverse-monotone on C relative to g if there exists
some real number α > 0 such that

〈Ax − Ay, Ag
αx − Ag

α y〉 ≥ 0, ∀x, y ∈ C. (2.15)

When A = g′ and 0 < α ≤ 1, A is strongly inverse-monotone on C relative to g (see [11]).

Lemma 2.6 ([11]) Let ∅ �= A−10 ∩ C. If an operator A is strongly inverse-monotone on C
relative to g, then it is inverse-monotone on C relative to g with A0 = A−10 ∩ C.

The following Lemma is important in our paper.

Lemma 2.7 ([5]) Suppose that the function g : X→ R is totally convex on bounded sets
and has bounded Gâteaux derivative g′ on bounded sets. If T : C → X is an operator such
that

Dg(T y, T x) ≤ Dg(y, x), ∀x, y ∈ C,

then for any weakly convergent sequence {xn} ⊆ C which has lim
n→∞ Dg(T xn, xn) = 0, the

vector x = w − lim
n→∞ xn is a fixed point of T .

The following conclusions are key to our convergence analysis.

Proposition 2.1 Let X be a reflexive Banach space and suppose that the function g : X → R

is lower semicontinuous and totally convex on bounded sets, and g′ is uniformly norm to norm
continuous on bounded sets. Let {xn} be bounded such that ‖xn+1− xn‖ → 0 as n→∞ and
C be a nonempty closed convex subset of X. Suppose that {Dg(v, xn+1) + γn Dg(v, xn)} is
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nonincreasing for any v ∈ C, where {γn} is a nonnegative bounded sequence. Then {�g
C xn}

converges strongly to v0 ∈ C, which is the unique element of C such that

lim
n→∞(Dg(v0, xn+1)+ γn Dg(v0, xn)) = min

v∈C
lim

n→∞(Dg(v, xn+1)+ γn Dg(v, xn)).

Proof Since {xn} is bounded, lim
n→∞‖xn+1 − xn‖ = 0 and g′ is uniformly norm to norm

continuous on bounded sets, we have that {g′(xn)} is bounded and

‖g′(xn)− g′(xn+1)‖∗ → 0 (2.16)

as n→∞. From the convexity of g, we deduce that

〈g′(xn+1), xn − xn+1〉 ≤ g(xn)− g(xn+1) ≤ 〈g′(xn), xn − xn+1〉. (2.17)

Hence we have g(xn)− g(xn+1)→ 0 as n→∞. Observe that

Dg(v, xn+1)− Dg(v, xn) = g(xn)− g(xn+1)+ 〈g′(xn), v − xn〉 − 〈g′(xn+1), v − xn+1〉
= g(xn)− g(xn+1)+ 〈g′(xn)− g′(xn+1), v − xn〉
+ 〈g′(xn+1), xn+1 − xn〉, (2.18)

we have from (2.16–2.18) and the boundedness of {xn} that

lim
n→∞(Dg(v, xn+1)+ γn Dg(v, xn)− (1+ γn)Dg(v, xn)) = 0 (2.19)

holds uniformly for any v ∈ B ⊆ C, where B is an arbitrary bounded subset of C. Since
{Dg(v, xn+1)+γn Dg(v, xn)} is nonincreasing for any v ∈ C, it is convergent for any v ∈ C.

By (2.19), we deduce

lim
n→∞(Dg(v, xn+1)+ γn Dg(v, xn)) = lim

n→∞(1+ γn)Dg(v, xn) (2.20)

for any v ∈ C.

Let f (v) = lim
n→∞(Dg(v, xn+1)+ γn Dg(v, xn)) for any v ∈ C. Then f (v) is proper convex

and nonnegative on C . By (2.20), we have

f (v) = lim
n→∞(1+ γn)Dg(v, xn) (2.21)

for any v ∈ C. Since g′ is uniformly norm to norm continuous on bounded sets, g has
bounded Gâteaux derivative g′ on bounded sets. From the proof of Proposition 2.1 in [11]
and the boundedness of {γn}, we know that f is continuous on C . Similarly, f is coercive on
C (see Proposition 2.1 in [11]). Hence the function f has a minimizer v0 on the set C, i.e.,

f (v0) = min
v∈C

f (v).

By (2.21), we get that f (v0) = lim
n→∞(1+γn)Dg(v0, xn). Then, for any ε > 0, there exists

an integer N > 0 such that

(1+ γn)Dg(v0, xn) < f (v0)+ ε (2.22)

for all n ≥ N . From the inequality (2.6) we get

Dg(v0,�
g
C xn)+ Dg(�

g
C xn, xn) ≤ Dg(v0, xn) (2.23)

for all n ∈ N. It results by (2.22) and (2.23) that

(1+ γn)Dg(�
g
C xn, xn) < f (v0)+ ε (2.24)

for all n ≥ N .
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From the total convexity on bounded sets of g and the boundedness of {xn}, similar to the
proof of Proposition 2.1 in [11], we get that {�g

C xn} is bounded. For the subset {�g
C xn} ⊆ C

and the above ε, by (2.19), there exists N1 > N such that

|Dg(v, xn+1)+ γn Dg(v, xn)− (1+ γn)Dg(v, xn)| < ε (2.25)

for all n ≥ N1 and any v ∈ {�g
C xn}. It follows from (2.24) and (2.25) that

Dg(�
g
C xn, xn+1)+ γn Dg(�

g
C xn, xn) < (1+ γn)Dg(�

g
C xn, xn)+ ε

< f (v0)+ 2ε (2.26)

for all n ≥ N1. By (2.26) and the monotonicity of {Dg(v, xn+1) + γn Dg(v, xn)} for any
v ∈ C, we have that

f (v0) ≤ f (�
g
C xn) ≤ Dg(�

g
C xn, xn+k)+ γn Dg(�

g
C xn, xn+k−1)

≤ · · · ≤ Dg(�
g
C xn, xn+1)+ γn Dg(�

g
C xn, xn)

< (1+ γn)Dg(�
g
C xn, xn)+ ε

< f (v0)+ 2ε (2.27)

for all n ≥ N1. Then |(1+ γn)Dg(�
g
C xn, xn)− f (v0)| < ε holds for n ≥ N1, which means

that

lim
n→∞(1+ γn)Dg(�

g
C xn, xn) = f (v0). (2.28)

It holds from (2.23) that

(1+ γn)Dg(v0,�
g
C xn)+ (1+ γn)Dg(�

g
C xn, xn) ≤ (1+ γn)Dg(v0, xn) (2.29)

for all n ∈ N. It follows from (2.28) and (2.29) that lim
n→∞ Dg(v0,�

g
C xn) = 0. The function

g is totally convex on bounded sets, therefore, it is sequentially consistent. It follows from
the boundedness of {�g

C xn} that lim
n→∞‖v0 −�

g
C xn‖ = 0. ��

Proposition 2.2 Let X be a reflexive Banach space and suppose that the function g : X → R

is lower semicontinuous and totally convex on bounded sets, and g has bounded Gâteaux
derivative g′ on bounded sets. Let {xn} be bounded and C be a nonempty closed convex
subset of X. Suppose that {Dg(v, xn+1) + γn Dg(v, xn)} is nonincreasing for any v ∈ C,

where {γn} is a nonnegative sequence and lim
n→∞ γn = 0. Then {�g

C xn} converges strongly to

v0 ∈ C, which is the unique element of C such that

lim
n→∞(Dg(v0, xn+1)+ γn Dg(v0, xn)) = min

v∈C
lim

n→∞(Dg(v, xn+1)+ γn Dg(v, xn)).

Proof By the inequality

g(�
g
C xm)− g(xn) ≤ 〈g′(�g

C xm),�
g
C xm − xn〉,

we deduce

Dg(�
g
C xm, xn) = g(�

g
C xm)− g(xn)− 〈g′(xn),�

g
C xm − xn〉

≤ 〈g′(�g
C xm) − g′(xn),�

g
C xm − xn〉

≤ ‖g′(�g
C xm) − g′(xn)‖ · ‖�g

C xm − xn‖. (2.30)

Since {xn} and {�g
C xn} are bounded, and g has bounded Gâteaux derivative g′ on bounded

sets, we obtain by (2.30) that {Dg(�
g
C xm, xn)} is uniformly bounded for all m ∈ N.

123



J Glob Optim (2009) 44:609–629 617

Let f (v) = lim
n→∞(Dg(v, xn+1) + γn Dg(v, xn)) for any v ∈ C. Similar to the deduction

of (2.30), {Dg(v, xn)} is bounded. It follows from lim
n→∞ γn = 0 that

f (v) = lim
n→∞ Dg(v, xn) (2.31)

for any v ∈ C. By the proof of Proposition 2.1 in [11], f has a minimizer v0 on the set C,

i.e., lim
n→∞ Dg(v0, xn) = f (v0) = min

v∈C
f (v). Moreover, lim

n→∞ γn Dg(�
g
C xm, xn) = 0 holds

uniformly for any m ∈ N. Then, for any ε > 0, there exists an integer N > 0 such that

Dg(v0, xn) < f (v0)+ ε (2.32)

for all n ≥ N , and

γn Dg(�
g
C xm, xn) < ε (2.33)

for all m ∈ N and n ≥ N . Due to (2.23), (2.32) and (2.33), we have

f (v0) ≤ f (�
g
C xn+1) ≤ Dg(�

g
C xn+1, xn+k)+ γn+k−1 Dg(�

g
C xn+1, xn+k−1)

≤ · · · ≤ Dg(�
g
C xn+1, xn+1)+ γn Dg(�

g
C xn+1, xn)

< f (v0)+ 2ε (2.34)

for all n ≥ N . It results by (2.34) that, for all n ≥ N ,

|Dg(�
g
C xn+1, xn+1)+ γn Dg(�

g
C xn+1, xn)− f (v0)| < 2ε. (2.35)

It follows from (2.33) that

|Dg(�
g
C xn+1, xn+1)− f (v0)| < 3ε (2.36)

for all n≥ N . Similar proof to the last part of that of Proposition 2.1 yields
lim

n→∞‖v0 −�
g
C xn‖ = 0. ��

Let {xn} ⊂ X be a sequence. Denote by {xn}ws
the weak sequential closure of {xn}, i.e.,

the set of all points x for which there exists a subsequence {xni } of {xn} converging weakly
to x .

Lemma 2.8 Let X be a Banach space and g′ be weakly sequentially continuous. Let {xn}
be a sequence such that ‖xn+1− xn‖ → 0 as n→∞ and its any subsequence has a weakly
convergent subsequence. Suppose that lim

n→∞(Dg(v, xn+1) + γn Dg(v, xn)) is finite for any

v ∈ {xn}ws
, where {γn} is a convergent sequence and lim

n→∞ γn �= −1. Then {xn} is weakly

convergent.

Proof Clearly, {xn}ws �= ∅. Let {xni } and {xn j } be two subsequences of {xn} such that

xni ⇀ z and xn j ⇀w as i, j→∞. Then z and w belong to {xn}ws
. By given assump-

tion, lim
n→∞(Dg(z, xn+1)+ γn Dg(z, xn)) and lim

n→∞(Dg(w, xn+1)+ γn Dg(w, xn)) exist.

Since ‖xn+1− xn‖ → 0, we have xn j+1 ⇀ w as j →∞. Since g′ is weakly sequentially
continuous, we have that {g′(xn j )} and {g′(xn j+1)} converge weakly∗ to g′(w) as j →∞.

Then lim
j→∞〈z − w, (1+ γn j )g

′(w)− (g′(xn j+1)+ γn j g′(xn j ))〉 = 0. From the equality

Dg(z, xn j+1)+ γn j Dg(z, xn j ) = (1+ γn j )Dg(z, w)+ (Dg(w, xn j+1)+ γn j Dg(w, xn j ))

+〈z − w, (1+ γn j )g
′(w)− (g′(xn j+1)+ γn j g′(xn j ))〉,

(2.37)
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we have

lim
n→∞(Dg(z, xn+1)+ γn Dg(z, xn))

= lim
j→∞(Dg(z, xn j+1)+ γn j Dg(z, xn j ))

= lim
j→∞(1+ γn j )Dg(z, w)+ lim

j→∞(Dg(w, xn j+1)+ γn j Dg(w, xn j ))

+ lim
j→∞〈z − w, (1+ γn j )g

′(w)− (g′(xn j+1)+ γn j g′(xn j ))〉
= (1+ lim

n→∞ γn)Dg(z, w)+ lim
n→∞(Dg(w, xn+1)+ γn Dg(w, xn)). (2.38)

Similarly, we also get

lim
n→∞(Dg(w, xn+1)+ γn Dg(w, xn)) = (1+ lim

n→∞ γn)Dg(w, z)+ lim
n→∞(Dg(z, xn+1)

+ γn Dg(z, xn)). (2.39)

Adding (2.38) and (2.39) side by side we obtain that

lim
n→∞(Dg(w, xn+1)+ γn Dg(w, xn))+ lim

n→∞(Dg(z, xn+1)+ γn Dg(z, xn))

= (1+ lim
n→∞ γn)(Dg(w, z)+ Dg(z, w))+ lim

n→∞(Dg(w, xn+1)+ γn Dg(w, xn))

+ lim
n→∞(Dg(z, xn+1)+ γn Dg(z, xn)).

Since lim
n→∞ γn �= −1, we conclude that Dg(w, z)+Dg(z, w) = 0, which implies that w = z.

��
Lemma 2.9 Suppose that X is a Banach space and g′ is weakly sequentially continuous.
Let {xn} be a sequence such that its any subsequence has a weakly convergent subsequence.
Suppose that lim

n→∞(Dg(v, xn+1) + γn Dg(v, xn)) is finite for any v ∈ {xn}ws
, where {γn} is

a sequence and lim
n→∞ γn = 0. Then {xn} is weakly convergent.

Proof Let {xni } and {xn j } be two subsequences of {xn} such that xni ⇀ z and xn j ⇀ w

as i, j → ∞. Since g′ is weakly sequentially continuous, {g′(xn j )} converges weakly∗ to
g′(w) as j →∞. On the other hand, there exist a subsequence {xn jl−1} of {xn j−1} and some
u ∈ X such that xn jl−1 ⇀ u as l →∞, and so {g′(xn jl−1)} converges weakly∗ to g′(u). It
results by lim

n→∞ γn = 0 that

lim
l→∞〈z − w, (1+ γn jl−1)g

′(w)− (g′(xn jl
)+ γn jl−1g′(xn jl−1))〉

= lim
l→∞〈z − w, g′(w)− g′(xn jl

)〉 + lim
l→∞ γn jl−1〈z − w, g′(w)− g′(xn jl−1)〉 = 0.

(2.40)

Replacing xn j+1, γn j and xn j by xn jl
, γn jl−1 and xn jl−1 in (2.37), respectively, we get

lim
n→∞(Dg(z, xn+1)+ γn Dg(z, xn))

= lim
l→∞(Dg(z, xn jl

)+ γn jl−1 Dg(z, xn jl−1))

= lim
l→∞(1+ γn jl−1)Dg(z, w)+ lim

l→∞(Dg(w, xn jl
)+ γn jl−1 Dg(w, xn jl−1))

+ lim
l→∞〈z − w, (1+ γn jl−1)g

′(w)− (g′(xn jl
)+ γn jl−1g′(xn jl−1))〉

= Dg(z, w)+ lim
n→∞(Dg(w, xn+1)+ γn Dg(w, xn)). (2.41)
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Similar to the last part of the deduction of Lemma 2.8, we conclude that w = z. ��
Corollary 2.1 Let X be a Banach space and suppose that g has bounded Gâteaux deri-
vative g′ on bounded sets and g′ is weakly sequentially continuous. Let {xn} be a bounded
sequence such that its any subsequence has a weakly convergent subsequence. Suppose that
lim

n→∞(Dg(v, xn+1)+ γn Dg(v, xn)) exists for any v ∈ {xn}ws
, where {γn} is a sequence and

lim
n→∞ γn = 0. Then {xn} is weakly convergent.

Proof By the inequality

g(v)− g(xn) ≤ 〈g′(v), v − xn〉,
and

Dg(v, xn) = g(v)− g(xn)− 〈g′(xn), v − xn〉
≤ 〈g′(v)− g′(xn), v − xn〉
≤ ‖g′(v)− g′(xn)‖ · ‖v − xn‖ (2.42)

for any v ∈ X, applying the boundedness of g′ on bounded sets, it is easy to verify that
{Dg(v, xn)} is bounded. Consequently, lim

n→∞(Dg(v, xn+1) + γn Dg(v, xn)) is finite for any

v ∈ {xn}ws
. The conclusion follows from Lemma 2.9. ��

In the sequel we consider the properties of the Bregman distance and the Bregman pro-
jection with respect to ‖ · ‖2.

Let X be a smooth Banach space. Consider now the following function

φ(y, x) : = ‖y‖2 − 2〈y, J (x)〉 + ‖x‖2, for all x, y ∈ X,

which is called the Lyapunov function in [1]. It is obvious from the definition of φ that the
Bregman distance Dg(y, x) is just φ(y, x) whenever g=‖·‖2, and (‖x‖−‖y‖)2≤φ(y, x) ≤
(‖x‖ + ‖y‖)2 for all x, y ∈ X.

It is well known that if a Banach space X is uniformly convex, then ‖ · ‖2 is totally convex
on bounded sets.

The following Lemma shows that a uniformly convex Banach space is sequentially
consistent.

Lemma 2.10 ([4,10]) Let X be a smooth and uniformly convex Banach space and let {xn}
and {yn} be sequences in X such that either {xn} or {yn} is bounded. If lim

n→∞φ(xn, yn) = 0,

then lim
n→∞‖xn − yn‖ = 0.

Define a function V : X × X∗ → R as follows:

V (x, x∗) : = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2∗
for all x ∈ X and x∗ ∈ X∗. Then it is obvious that V (x, x∗)=φ(x, J−1(x∗)) and V (x, J (y))=
φ(x, y).

In the following we assume that X is a reflexive, strictly convex and smooth Banach space.
Let C be a closed convex subset of X . Considering g = ‖ · ‖2, in this case, the Bregman
projection �

g
C is exactly the operator

�C x : = arg min
y∈C

φ(y, x),
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which is said to be the generalized projection of x on C (see [1]).
In this case the inequality (2.6) is as follows:

φ(y,�C x)+ φ(�C x, x) ≤ φ(y, x), ∀ y ∈ C, (2.43)

which implies that the operator �C gives the best approximation of x ∈ X relative to the
functional φ(y, x) (see [1]). Consequently, �C is the conditionally non-expansive operator
relative to the functional φ(y, x) in Banach spaces, i.e.,

φ(y,�C x) ≤ φ(y, x), ∀ y ∈ C.

The operator �C : X → C ⊂ X is identity on C , i.e., for every x ∈ C , �C x = x . In a
Hilbert space H , J is an identity operator, φ(y, x) = ‖y − x‖2 and �C coincides with the
metric projection operator PC .

Note that if g= 1
2‖·‖2 (in this case Dg(y, x) = 1

2φ(y, x)), by the definition of the Bregman
distance, the Bregman projection and the total convexity of g, we know that the Bregman
projection is the same operator and g is totally convex as in that case when g = ‖ · ‖2.

The following result is of great importance (see [1]):

Lemma 2.11 (Basic variational principle for the generalized projection) Assume that C is
a closed convex subset of X. Then x̂ = �C x is the generalized projection of x on C if and
only if the inequality

〈J (x)− J (x̂), y − x̂〉 ≤ 0 (2.44)

holds for all y ∈ C.

3 Convergence theorems

When X is a uniformly smooth and uniformly convex Banach space whose duality mapping
J is weakly sequentially continuous and g=‖ · ‖2, we can easily see that in this case
Dg(x, y) = φ(x, y) and Proposition 2.1, Proposition 2.2, Lemma 2.8 and Lemma 2.9 are all
satisfied, in which g verify the assumptions of the results in Sect. 2.

In addition, an operator A : X → X∗ is called hemicontinuous if it is continuous along
each line segment in X with respect to the weak∗ topology of X∗. Let S : X ⇒ X∗ be a
set-valued mapping. G(S) is always referred to be the graph of S.

Lemma 3.1 Let X be a reflexive, strictly convex and smooth Banach space, and C be a
nonempty closed convex subset of X. Suppose that A : X→ X∗ is an inverse-monotone
operator on C relative to 1

2‖ · ‖2 with constant α > 0. Let {xn} be a sequence defined as

⎧
⎪⎨

⎪⎩

x0, x1 ∈ C,

zn = J−1((1− βn)J (Aαxn)+ βn J (Aαxn−1)),

xn+1 = �C zn

(3.1)

for all n ∈N, where x0, x1 are two arbitrary elements in C and {βn} ⊂ [0, 1) is a
nonincreasing sequence. Then the sequences {xn} and {Aαxn} are bounded, and {φ(v, xn)+
βn−1φ(v, xn−1)} and {φ(v, Aαxn) + βn−1φ(v, Aαxn−1)} are nonincreasing and have the
same limit for any v ∈ A0, where A0 is the monotonicity pole of A relative to constant α.
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Proof Fix v ∈ A0. Since A is inverse-monotone on C relative to 1
2‖·‖2 with constant α > 0,

applying Lemma 2.3 to g = 1
2‖ · ‖2 and noticing {xn} ⊂ C, we get that the inequality

φ(v, Aαxn)+ φ(Aαxn, xn) ≤ φ(v, xn) (3.2)

holds for all n ∈ N. By (2.43) and (3.2), we have

φ(v, xn+1) = φ(v,�C zn)

≤ φ(v,�C zn)+ φ(�C zn, zn)

≤ φ(v, zn) = V (v, J (zn))

= V (v, (1− βn)J (Aαxn)+ βn J (Aαxn−1))

≤ (1− βn)V (v, J (Aαxn))+ βn V (v, J (Aαxn−1))

= (1− βn)φ(v, Aαxn)+ βnφ(v, Aαxn−1)

≤ (1− βn)φ(v, xn)+ βnφ(v, xn−1) (3.3)

for all n ∈ N. Adding βnφ(v, xn) on both sides of (3.3) and noting that {βn} is nonincreasing,
we obtain

φ(v, xn+1)+ βnφ(v, xn) ≤ φ(v, xn)+ βnφ(v, xn−1)

≤ φ(v, xn)+ βn−1φ(v, xn−1). (3.4)

This implies that the nonnegative real number sequence {φ(v, xn) + βn−1φ(v, xn−1)} is
nonincreasing for any v ∈ A0. So, it is convergent for any v ∈ A0. By (3.2) and (3.3), we
get, for any n ∈ N,

φ(v, Aαxn+1) ≤ φ(v, xn+1) ≤ (1− βn)φ(v, Aαxn)+ βnφ(v, Aαxn−1). (3.5)

Similarly,

φ(v, Aαxn+1)+ βnφ(v, Aαxn) ≤ φ(v, Aαxn)+ βn−1φ(v, Aαxn−1). (3.6)

Since (‖xn‖ − ‖v‖)2 ≤ φ(v, xn) ≤ φ(v, xn) + βn−1φ(v, xn−1), from (3.4), we have that
{xn} is bounded. From (3.6), {Aαxn} is bounded.

It follows from (3.1), (3.3) and (3.2) that

φ(v, xn+2)+ βn+1φ(v, xn+1) ≤ φ(v, zn+1)+ βn+1φ(v, zn)

= V (v, ((1− βn+1)J (Aαxn+1)+ βn+1 J (Aαxn)))+ βn+1V (v, ((1− βn)J (Aαxn)

+βn J (Aαxn−1))) ≤ (1− βn+1)V (v, J (Aαxn+1))+ βn+1V (v, J (Aαxn))

+βn+1(1− βn)V (v, J (Aαxn))+ βn+1βn V (v, J (Aαxn−1))

≤ (1− βn+1)(V (v, J (Aαxn+1))+ βn+1V (v, J (Aαxn)))+ βn+1(V (v, J (Aαxn))

+βn V (v, J (Aαxn−1))) ≤ (1− βn+1)(φ(v, Aαxn+1)

+βnφ(v, Aαxn))+ βn+1(φ(v, Aαxn) + βn−1φ(v, Aαxn−1))

≤ (1− βn+1)(φ(v, xn+1)+ βnφ(v, xn))+ βn+1(φ(v, xn)+ βn−1φ(v, xn−1)) (3.7)

for all n ∈ N, where the second inequality in (3.7) is due to the convexity of V (v, ·) and we
also use the monotonicity of {βn}. Hence we have by (3.7) that

lim
n→∞(φ(v, xn)+ βn−1φ(v, xn−1)) = lim

n→∞(φ(v, Aαxn)+ βn−1φ(v, Aαxn−1)). (3.8)

��
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Lemma 3.2 Let X be a reflexive, strictly convex and smooth Banach space, and C be
a nonempty closed convex subset of X. Suppose that A : X→ X∗ is an operator such
that Aα is nonexpansive on C relative to 1

2‖ · ‖2 for some α > 0. Let {xn} be a sequence
defined as (3.1) and {βn} be chosen according to Lemma 3.1. If ∅ �=C0= A−10 ∩ C,

then the sequences {xn} and {Aαxn} are bounded, and {φ(v, xn) + βn−1φ(v, xn−1)} and
{φ(v, Aαxn)+ βn−1φ(v, Aαxn−1)} are nonincreasing for any v ∈ C0, which have the same
limit.

Proof Take v ∈ C0. Since Aα is nonexpansive on C relative to 1
2‖ · ‖2, noting that v ∈ C0 ⊆

A−10 and {xn} ⊂ C, we have that

φ(v, Aαxn) = φ(Aαv, Aαxn) ≤ φ(v, xn) (3.9)

for any n ∈ N. By (3.1), (2.43) and (3.9), we get that

φ(v, xn+1) ≤ φ(v, zn)

≤ (1− βn)φ(v, Aαxn)+ βnφ(v, Aαxn−1)

≤ (1− βn)φ(v, xn)+ βnφ(v, xn−1) (3.10)

for any n ∈ N. By using similar arguments as those in the proof of Lemma 3.1, we deduce
by (3.10) and the monotonicity of {βn} that {φ(v, xn)+βn−1φ(v, xn−1)} and {φ(v, Aαxn)+
βn−1φ(v, Aαxn−1)} are nonincreasing for v ∈ C0, and so {xn} and {Aαxn} are bounded.

The same inequality as (3.7) follows from (3.1), (3.10) and (3.9), in which the last inequa-
lity is due to (3.9), and so the equality (3.8) follows. ��

Theorem 3.1 Let X be a uniformly smooth and uniformly convex Banach space whose
duality mapping J is weakly sequentially continuous, and C be a nonempty closed convex
subset of X. Suppose that A : X→ X∗ is a hemicontinuous, monotone and inverse-monotone
operator on C relative to 1

2‖ · ‖2 with constant α > 0. Let {xn} be a sequence defined as
(3.1), and {βn} be chosen according to Lemma 3.1. If A−10 ∩ C = A0, then the sequence
{xn} converges weakly to u, which is the unique element of A0 such that

lim
n→∞(φ(u, xn)+ βn−1φ(u, xn−1)) = min

v∈A0
lim

n→∞(φ(v, xn)+ βn−1φ(v, xn−1)).

Proof We take v ∈ A0. From (3.8) in Lemma 3.1 and the inequality

φ(Aαxn, xn) ≤ φ(v, xn)− φ(v, Aαxn)

≤ (φ(v, xn)− φ(v, Aαxn))+ βn−1(φ(v, xn−1)− φ(v, Aαxn−1))

= (φ(v, xn)+ βn−1φ(v, xn−1))− (φ(v, Aαxn)+ βn−1φ(v, Aαxn−1)),

(3.11)

it follows that

lim
n→∞φ(Aαxn, xn) = 0. (3.12)

Since {xn} is bounded, we get by Lemma 2.10 that

lim
n→∞‖Aαxn − xn‖ = 0. (3.13)
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By the uniform smoothness of X , it follows from (3.13) that

lim
n→∞α‖Axn‖∗ = lim

n→∞‖(J xn − αAxn)− J (xn)‖∗
= lim

n→∞‖J (J−1(J xn − αAxn))− J (xn)‖∗
= lim

n→∞‖J (Aαxn)− J (xn)‖∗ = 0. (3.14)

Since {xn} is bounded, {xn} has a subsequence {xni } which converges weakly to some
u ∈ C .

We next prove u ∈ A−10. Let

Sv =
{

Av + NCv, if v ∈ C,

∅, if v /∈ C.
(3.15)

Since A is hemicontinuous and monotone (see [14]), S is maximal monotone and v ∈ S−10
if and only if v ∈ V I (C, A). Since A is inverse-monotone on C relative to 1

2‖·‖2, by Lemma
2.5, v ∈ S−10 if and only if v ∈ A−10 ∩ C. Let (v, v∗) ∈ G(S). Then, we have

v∗ ∈ Sv = Av + NCv,

and hence v∗ − Av ∈ NCv. Thus, we have

〈v − w, v∗ − Av〉 ≥ 0 (3.16)

for all w ∈ C. From {xn} ⊂ C and (3.16), we have

〈v − xni , v
∗〉 ≥ 〈v − xni , Av〉
= 〈v − xni , Av − Axni 〉 + 〈v − xni , Axni 〉
≥ 〈v − xni , Axni 〉 (3.17)

for all i ∈ N. Therefore, letting i →∞, we obtain by (3.14) that 〈v − u, v∗〉 ≥ 0. Since S
is maximal monotone, we have u ∈ S−10 and hence u ∈ A−10 ∩C = A0. This implies that
{xn}ws

is included in A0. So, we get that {φ(v, xn+1) + βnφ(v, xn)} is convergent for any
v ∈ {xn}ws

.

We distinguish the following two possible situations: Either (i) lim
n→∞βn > 0 or (ii) lim

n→∞
βn = 0.

Case (i): Due to (3.7) and the fact that both sides of (3.7) have the same limit, both sides
of the second inequality in (3.7) have also the same limit. Then the right side of the second
inequality in (3.7) minus the left side tends to 0, that is

((1− βn+1)V (v, J (Aαxn+1))+ βn+1V (v, J (Aαxn))− V (v, ((1− βn+1)J (Aαxn+1) +
βn+1 J (Aαxn))))+ (βn+1(1− βn)V (v, J (Aαxn))+ βn+1βn V (v, J (Aαxn−1))

−βn+1V (v, ((1− βn)J (Aαxn)+ βn J (Aαxn−1))))→ 0 (3.18)

In fact, the right side of the second inequality in (3.7) minus the left side is just (3.18).

Moreover, in lines−1–−9 of page 14 and line 1 of page 15, we have changed the following
proof
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“Noting that the two terms in (3.18) are both nonnegative, we deduce by (3.18) that

(1− βn+1)‖J (Aαxn+1)‖2∗ + βn+1‖J (Aαxn)‖2∗ − ‖(1− βn+1)J (Aαxn+1)

+βn+1 J (Aαxn)‖2∗
= (1− βn+1)(‖v‖2 − 2〈v, J (Aαxn+1)〉 + ‖J (Aαxn+1)‖2∗)
+βn+1(‖v‖2 − 2〈v, J (Aαxn)〉 + ‖J (Aαxn)‖2∗)
− (‖v‖2 − 2〈v, ((1− βn+1)J (Aαxn+1)+ βn+1 J (Aαxn))〉
+ ‖(1− βn+1)J (Aαxn+1)+ βn+1 J (Aαxn)‖2∗)
= ((1− βn+1)V (v, J (Aαxn+1))+ βn+1V (v, J (Aαxn))

− V (v, ((1− βn+1)J (Aαxn+1)+ βn+1 J (Aαxn))))→ 0,

which is the first term in (3.18)” as:

“ Noting that the two terms in (3.18) are both nonnegative ‘by the convexity of V (v, ·)’,
we deduce by (3.18) that

0← (1− βn+1)V (v, J (Aαxn+1))+ βn+1V (v, J (Aαxn))

− V (v, ((1− βn+1)J (Aαxn+1)+ βn+1 J (Aαxn)))

= (1− βn+1)(‖v‖2 − 2〈v, J (Aαxn+1)〉 + ‖J (Aαxn+1)‖2∗)
+βn+1(‖v‖2 − 2〈v, J (Aαxn)〉 + ‖J (Aαxn)‖2∗)
− (‖v‖2 − 2〈v, ((1− βn+1)J (Aαxn+1)+ βn+1 J (Aαxn))〉
+ ‖(1− βn+1)J (Aαxn+1)+ βn+1 J (Aαxn)‖2∗)
= (1− βn+1)‖J (Aαxn+1)‖2∗ + βn+1‖J (Aαxn)‖2∗ − ‖(1− βn+1)J (Aαxn+1)

+βn+1 J (Aαxn)‖2∗,

which is the first term in (3.18)”. I.e., the sum of the two nonnegative terms in (3.18) tends to
0 implies each term converges to 0. Since X is uniformly smooth, X∗ is uniformly convex.
Since {J (Aαxn)} is bounded, by Lemma 2.1, there exists a strictly increasing, continuous
and convex function k∗ : [0,∞)→ [0,∞) such that k∗(0) = 0 and

‖(1− βn+1)J (Aαxn+1)+ βn+1 J (Aαxn)‖2∗
≤ (1− βn+1)‖J (Aαxn+1)‖2∗ + βn+1‖J (Aαxn)‖2∗
−βn+1(1− βn+1)k

∗(‖J (Aαxn+1)− J (Aαxn)‖∗)

for all n ∈ N. Since k∗ is strictly increasing, it follows from k∗(0) = 0 and lim
n→∞βn > 0 that

‖J (Aαxn+1)− J (Aαxn)‖∗ → 0 as n→∞. Since X is uniformly convex, X∗ is uniformly
smooth. So, we have ‖Aαxn+1 − Aαxn‖ → 0 as n→∞. Hence we deduce by (3.13) that

‖xn+1 − xn‖ ≤ ‖Aαxn+1 − xn+1‖ + ‖Aαxn+1 − Aαxn‖ + ‖Aαxn − xn‖ → 0. (3.19)

It follows from Lemma 2.8 that xn ⇀ u.

By the definition of A0, we know that it is a closed convex subset of C. Put un = �A0 xn .

From (2.44) and u ∈ A0, We have

〈u − un, J (un)− J (xn)〉 ≥ 0. (3.20)
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By Proposition 2.1, {un} converges strongly to some u0, which is the unique element of A0

such that

lim
n→∞(φ(u0, xn+1)+ βnφ(u0, xn)) = min

v∈A0
lim

n→∞(φ(v, xn+1)+ βnφ(v, xn)). (3.21)

Since J is uniformly norm to norm continuous on bounded sets and weakly sequentially
continuous, by (3.20), we conclude

〈u − u0, J (u0)− J (u)〉 ≥ 0.

It follows from the strict monotonicity of J that u = u0.

Case (ii): Noting that lim
n→∞βn = 0 and lim

n→∞(φ(v, xn+1)+ βnφ(v, xn)) is finite for any v ∈
{xn}ws

, we obtain by Lemma 2.9 that xn ⇀ u.

In a similar way as in the last part of the proof of case (i), by Proposition 2.2, {un} converges
strongly to u, where un = �A0 xn and u is the unique element of A0 such that (3.21) holds.
So, the conclusion follows. ��

Corollary 3.1 Let X be a uniformly smooth and uniformly convex Banach space whose
duality mapping J is weakly sequentially continuous, and C be a nonempty closed convex
subset of X. Suppose that A : X → X∗ is a hemicontinuous, monotone and strongly inverse-
monotone operator on C relative to 1

2‖ · ‖2 with constant α > 0. Let {xn} be a sequence
defined as (3.1), and {βn} be chosen according to Lemma 3.1. If ∅ �= C0 = A−10 ∩ C, then
the sequence {xn} converges weakly to u, which is the unique element of C0 such that

lim
n→∞(φ(u, xn)+ βn−1φ(u, xn−1)) = min

v∈C0
lim

n→∞(φ(v, xn)+ βn−1φ(v, xn−1)).

Proof Since A−10 ∩ C �= ∅ and A is strongly inverse-monotone on C relative to 1
2‖ · ‖2,

by Lemma 2.6, A is inverse-monotone on C relative to 1
2‖ · ‖2 and A−10 ∩ C = A0. By

Theorem 3.1, the conclusion follows. ��

Theorem 3.2 Let X be a uniformly smooth and uniformly convex Banach space whose
duality mapping J is weakly sequentially continuous, and C be a nonempty closed convex
subset of X. Suppose that A : X → X∗ is an operator such that Aα is strongly nonexpansive
on C relative to 1

2‖ · ‖2 for some α > 0. Let {xn} be a sequence defined as (3.1), and {βn} be
chosen according to Lemma 3.1. If ∅ �= C0 = A−10 ∩ C, then the sequence {xn} converges
weakly to u ∈ C0. In addition, if C0 is a closed convex subset of C, then u is the unique
element of C0 such that

lim
n→∞(φ(u, xn)+ βn−1φ(u, xn−1)) = min

v∈C0
lim

n→∞(φ(v, xn)+ βn−1φ(v, xn−1)). (3.22)

Proof Due to Lemma 3.2, {xn} is bounded, and so {xn} has a subsequence {xni } which
converges weakly to some u ∈ C . Next we prove u ∈ A−10. Since Aα is strongly nonexpan-
sive on C , v ∈ C0 ⊆ A−10 and {xn} ⊂ C, there exists some λ > α such that

φ(v, Aαxn) = φ(Aαv, Aαxn)

≤ φ(v, xn)+ α(α − λ)φ(J−1(Av), J−1(Axn))

≤ φ(v, xn) (3.23)
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for any n ∈ N. Then, by (3.23) and Lemma 3.2, we have from the nonnegativity of {βn} that

0 ≤ α(λ− α)φ(J−1(Av), J−1(Axn))

≤ φ(v, xn)− φ(v, Aαxn)

≤ φ(v, xn)− φ(v, Aαxn)+ βn−1(φ(v, xn−1)− φ(v, Aαxn−1))

= (φ(v, xn)+ βn−1φ(v, xn−1))− (φ(v, Aαxn)+ βn−1φ(v, Aαxn−1))→ 0 (3.24)

as n→∞, noting that v ∈ A−10, and hence we deduce by (3.24) that

‖Axn‖2∗ = φ(J−1(Av), J−1(Axn))→ 0. (3.25)

By (3.25) and Lemma 3.2, we also have

0 ≤ φ(Aαxn, xn)

= φ(v, xn)− φ(v, Aαxn)− 2〈v − Aαxn, J (Aαxn)− J (xn)〉
≤ φ(v, xn)− φ(v, Aαxn)+ 2‖v − Aαxn‖ · ‖J (Aαxn)− J (xn)‖∗
≤ φ(v, xn)− φ(v, Aαxn)+ M‖J (Aαxn)− J (xn)‖∗
= φ(v, xn)− φ(v, Aαxn)+ Mα‖Axn‖∗
≤ φ(v, xn)+ βn−1φ(v, xn−1)− (φ(v, Aαxn)+ βn−1φ(v, Aαxn−1))

+Mα‖Axn‖∗ → 0 (3.26)

as n→∞, where M = sup
n≥1

2‖v − Aαxn‖ and the first equality is due to the definition of φ.

This yields φ(Aαxn, xn)→ 0. Since {xni } converges weakly to u, it follows from Lemma
2.7 that u is a fixed point of Aα. Hence u ∈ A−10 and so u ∈ C0. This implies that
{xn}ws

is included in C0. Thus we have that lim
n→∞(φ(v, xn)+βn−1φ(v, xn−1)) exists for any

v ∈ {xn}ws
.

Suppose that lim
n→∞βn > 0. By the same arguments as those of Theorem 3.1, it follows

from the same inequality as (3.7) and the uniform convexity of X∗ that ‖J (Aαxn+1) −
J (Aαxn)‖∗ → 0 as n→∞. This shows together with (3.25) that

‖J (xn+1)− J (xn)‖∗ = ‖(J (xn+1)− αAxn+1)+ αAxn+1 − (J (xn)− αAxn)− αAxn‖∗
≤ ‖J (Aαxn+1)− J (Aαxn)‖∗ + α‖Axn+1‖∗ + α‖Axn‖∗ → 0.

(3.27)

Then it holds from the uniform smoothness of X∗ that

lim
n→∞‖xn+1 − xn‖ = 0. (3.28)

It follows from Lemma 2.8 that xn ⇀ u.

Suppose that C0 is a closed convex subset of C. From the last part of the proof of case (i)
of Theorem 3.1, by Proposition 2.1, {un} converges strongly to some u, where un = �C0 xn

and u is the unique element of C0 such that

lim
n→∞(φ(u, xn)+ βn−1φ(u, xn−1)) = min

v∈C0
lim

n→∞(φ(v, xn)+ βn−1φ(v, xn−1)). (3.29)

When lim
n→∞βn = 0, noting that lim

n→∞(φ(v, xn) + βn−1φ(v, xn−1)) is finite for any v ∈
{xn}ws

, it follows from Lemma 2.9 that xn ⇀ u.
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Suppose that C0 is a closed convex subset of C. By Proposition 2.2, {un} converges
strongly to u, where un = �C0 xn and u is the unique element of C0 such that (3.29) holds.
So, the conclusion follows. ��
Corollary 3.2 Let X be a uniformly smooth and uniformly convex Banach space whose
duality mapping J is weakly sequentially continuous, and C be a nonempty closed convex
subset of X. Suppose that A : X→ X∗ is a hemicontinuous and monotone operator such that
Aα is strongly nonexpansive on C relative to 1

2‖ · ‖2 for some α > 0. Let {xn} be a sequence
defined as (3.1), and {βn} be chosen according to Lemma 3.1. If ∅ �= C0 = A−10 ∩ C, then
the sequence {xn} converges weakly to u, which is the unique element of C0 such that (3.22)
holds.

Proof From Theorem 3.2, it is sufficient to show that C0 is a closed convex subset of C. Let

Sv =
{

Av + NCv, if v ∈ C,

∅, if v /∈ C.

Since A is hemicontinuous and monotone, S is maximal monotone and v ∈ S−10 if and only
if v ∈ V I (C, A). Since Aα is a strongly nonexpansive operator on C relative to 1

2‖ · ‖2, it is
nonexpansive on C relative to 1

2‖ · ‖2. Noting that A−10 ∩ C �= ∅, by Lemma 2.4, we get
that v ∈ S−10 if and only if v ∈ A−10 ∩C. The maximal monotonicity of S guarantees that
C0 = A−10 ∩ C = S−10 is a closed convex subset of C. ��
Theorem 3.3 Let X be a uniformly smooth and uniformly convex Banach space whose
duality mapping J is weakly sequentially continuous, and C be a nonempty closed convex
subset of X. Suppose that A : X→ X∗ is an inverse strongly-monotone operator on C relative
to 1

2‖ · ‖2 with constant α > 0. Let {xn} be a sequence defined as (3.1), and {βn} be chosen
according to Lemma 3.1. Then the sequence {xn} converges weakly to u. In addition, if
C0 = A−10 ∩ C is a closed convex subset of C, especially C0 = A0, then u is the unique
element of C0 such that

lim
n→∞(φ(u, xn)+ βn−1φ(u, xn−1)) = min

v∈C0
lim

n→∞(φ(v, xn)+ βn−1φ(v, xn−1)), (3.30)

where A0 is monotonicity pole of A.

Proof Since A is inverse-monotone on C relative to 1
2‖·‖2 with constant α > 0, by Theorem

5.5 in [5], we have C0 �= ∅. Take v ∈ C0. Since Aα is nonexpansive on C relative to 1
2‖ · ‖2,

by Lemma 3.2, we have that lim
n→∞(φ(v, xn) + βn−1φ(v, xn−1)) and lim

n→∞(φ(v, Aαxn) +
βn−1φ(v, Aαxn−1)) exist for any v ∈ C0, and

lim
n→∞(φ(v, xn)+ βn−1φ(v, xn−1)) = lim

n→∞(φ(v, Aαxn)+ βn−1φ(v, Aαxn−1)). (3.31)

Fix v ∈ A0 ⊆ C0. Since A is inverse-monotone on C relative to 1
2‖ · ‖2 and {xn} ⊂ C ,

we have that (3.11) holds true. Due to (3.11) and (3.31), we get that

lim
n→∞φ(Aαxn, xn) = 0. (3.32)

This means by Lemma 2.10 that

lim
n→∞‖Aαxn − xn‖ = 0. (3.33)

Since {xn} is bounded, {xn} has a subsequence {xni } which converges weakly to some
u ∈ C . Since Aα is nonexpansive on C relative to 1

2‖ ·‖2, from (3.32), Lemma 2.7 yields that
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u is a fixed point of Aα. Hence u ∈ A−10, and so u ∈ C0. This shows that {xn}ws
is included

in C0. Hence we have that lim
n→∞(φ(v, xn)+ βn−1φ(v, xn−1)) exists for any v ∈ {xn}ws

.

Suppose that lim
n→∞βn > 0. Since A is inverse-monotone on C relative to 1

2‖ · ‖2, by the

same proof as that of Theorem 3.1, it follows that lim
n→∞‖Aαxn+1 − Aαxn‖ = 0. Similar to

(3.19), we have together with (3.33) that

lim
n→∞‖xn+1 − xn‖ = 0. (3.34)

It follows from Lemma 2.8 that xn ⇀ u.

If C0 is a closed convex subset of C, similar to the proof of case (i) of Theorem 3.1, the
conclusion follows from Proposition 2.1. Especially, when C0 = A0, by the closedness and
convexity of A0, we conclude that C0 is a closed convex subset of C. So the conclusion holds.

When lim
n→∞βn = 0, noting that lim

n→∞(φ(v, xn) + βn−1φ(v, xn−1)) is finite for any v ∈
{xn}ws

, it follows from Lemma 2.9 that xn ⇀ u.

If C0 is a closed convex subset of C, especially, C0 = A0, the conclusion follows from
Proposition 2.2. ��
Corollary 3.3 Let X be a uniformly smooth and uniformly convex Banach space whose
duality mapping J is weakly sequentially continuous, and C be a nonempty closed convex
subset of X. Suppose that A : X→ X∗ is a strongly inverse-monotone operator on C relative
to 1

2‖ · ‖2 with constant α > 0 such that Aα is nonexpansive on C relative to 1
2‖ · ‖2. Let {xn}

be a sequence defined as (3.1), and {βn} be chosen according to Lemma 3.1. If ∅ �= C0 =
A−10∩C, then the sequence {xn} converges weakly to u, which is the unique element of C0

such that (3.30) holds.

Proof Since A−10 ∩ C �= ∅ and A is strongly inverse-monotone on C relative to 1
2‖ · ‖2,

by Lemma 2.6, A is inverse-monotone on C relative to 1
2‖ · ‖2 and A−10 ∩ C = A0. Thus,

∅ �= C0 = A−10 ∩ C = A0. By Theorem 3.3, the conclusion follows. ��
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